LABORATORY WORKSHEET

WIMiR "Materials Science" -	Date:	Exercise no.:	Mark:
laboratory			
Student:	Group:		Supervisor:

1. First task is to determine the freely settled density and tapped density of ceramic powder. A type of ceramic powder is given by the supervisor.

Type of material.	physical density of the material $\mathbf{d}_{rz} = \dots \mathbf{g/cm}^3$
Mass of empty calibrated cylinder	$\mathbf{m}_{\mathbf{pc}} = \dots \mathbf{g}$
Mass of the cylinder with powder	$\mathbf{m}_{cpr} = \dots \mathbf{g}$
Freely settled density	$d_{nas} = (m_{cpr} - m_{pc})/25 \dots g/cm^3$
Powder volume after mechanical tapping	$V_{u} = \dots cm^{3}$
Tapped density	$\mathbf{d_{nas \cdot us}} = (\mathbf{m_{cpr}} - \mathbf{m_{pc}})/\mathbf{V_u} \dots \mathbf{g/cm^3}$

2. Consequently, using the same powder, one has to form by uniaxial pressing three samples, using steel matrix. Pressing load is given by the supervisor.

Pressing load	F = kG	Diameter of pressing p	unch	$\Phi_{\rm st}$ = mm
Forming pressure	P = kG/mn	$n^2 = \dots MPa;$	Form diameter	$\Phi_{f} = \dots \dots$

3. The following values must be calculated: **a**) apparent density d_{pi} of the compacts (ceramic green bodies), by their weight and volume determination (measuring the height h_i and assuming, that the diameter is Φ_f); **b**) relative density of the samples, $d_{wi} = (d_{pi}/d_{rz})*100\%$, and also their porosity $p_i = 100\% - d_{wi}$. The mean values of the mentioned parameters must also be calculated.

Sample No	Green body	Green body	Green body	Apparent	Relative	Porosity
	mass,	height,	volume,	density,	density,	p _i , %
	<i>m</i> _{<i>i</i>} , g	h _i , mm	V_i , cm ³	d_{pi} , g/cm ³	d_{wi} , %	
1						
2						
3						
Mean val.						

4. Analogically to point 3, one has to determine the apparent density ds_{pi} of sintered ceramic bodies (sinters). One has also to calculate relative density ds_{wi} and porosity $\mathbf{ps_i}$ of sinters. Subsequently, one has to determine the linear shrinkage during sintering, using following formula $\Delta_{\text{Li}} = (\Phi_f - \Phi_{\text{S}_i})/\Phi_f)*100$ % and estimate the volume shrinkage Δ_V using: $\Delta_{Vi} = 3*\Delta_{\text{Li}}$. formula. Finally, the mean values of the mentioned parameters must be calculated.

Sample	Sinter	Sinter	Sinter	Sinter	Sinter	Relative	Porosity,	Linear	Volume
No	mass,	height,	diameter,	volume,	apparent	density,	ps _i , %	shrinkage	shrinkage
	<i>ms_i</i> , g	hs _i , mm	Ø s _i , mm	Vs_i , cm ³	density,	ds _{wi} , %		during	related to
					ds_{pi} , g/cm ³			sintering,	sintering,
					I -			$\Delta_{\mathrm{Li}},$ %	$\Delta_{Vi}, \%$
1									
2									
3									
Mean									
val.									